skip to main content


Search for: All records

Creators/Authors contains: "Franson, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Giant planets grow by accreting gas through circumplanetary disks, but little is known about the timescale and mechanisms involved in the planet-assembly process because few accreting protoplanets have been discovered. Recent visible and infrared imaging revealed a potential accreting protoplanet within the transition disk around the young intermediate-mass Herbig Ae star, AB Aurigae (AB Aur). Additional imaging in Hαprobed for accretion and found agreement between the line-to-continuum flux ratio of the star and companion, raising the possibility that the emission source could be a compact disk feature seen in scattered starlight. We present new deep Keck/NIRC2 high-contrast imaging of AB Aur to characterize emission in Paβ, another accretion tracer less subject to extinction. Our narrow band observations reach a 5σcontrast of 9.6 mag at 0.″6, but we do not detect significant emission at the expected location of the companion, nor from other any other source in the system. Our upper limit on Paβemission suggests that if AB Aur b is a protoplanet, it is not heavily accreting or accretion is stochastic and was weak during the observations.

     
    more » « less
  2. Abstract

    Dynamical masses of giant planets and brown dwarfs are critical tools for empirically validating substellar evolutionary models and their underlying assumptions. We present a measurement of the dynamical mass and an updated orbit of PZ Tel B, a young brown dwarf companion orbiting a late-G member of theβPic moving group. PZ Tel A exhibits an astrometric acceleration between Hipparcos and Gaia EDR3, which enables the direct determination of the companion’s mass. We have also acquired new Keck/NIRC2 adaptive optics imaging of the system, which increases the total baseline of relative astrometry to 15 yr. Our joint orbit fit yields a dynamical mass of279+25MJup, semimajor axis of274+14au, eccentricity of0.520.10+0.08, and inclination of91.730.32+0.36°. The companion’s mass is consistent within 1.1σof predictions from four grids of hot-start evolutionary models. The joint orbit fit also indicates a more modest eccentricity of PZ Tel B than previous results. PZ Tel joins a small number of young (<200 Myr) systems with benchmark substellar companions that have dynamical masses and precise ages from moving group membership.

     
    more » « less
  3. Abstract

    AF Lep A+b is a remarkable planetary system hosting a gas-giant planet that has the lowest dynamical mass among directly imaged exoplanets. We present an in-depth analysis of the atmospheric composition of the star and planet to probe the planet’s formation pathway. Based on new high-resolution spectroscopy of AF Lep A, we measure a uniform set of stellar parameters and elemental abundances (e.g., [Fe/H] = −0.27 ± 0.31 dex). The planet’s dynamical mass (2.80.5+0.6MJup) and orbit are also refined using published radial velocities, relative astrometry, and absolute astrometry. We usepetitRADTRANSto perform chemically consistent atmospheric retrievals for AF Lep b. The radiative–convective equilibrium temperature profiles are incorporated as parameterized priors on the planet’s thermal structure, leading to a robust characterization for cloudy self-luminous atmospheres. This novel approach is enabled by constraining the temperature–pressure profiles via the temperature gradient(dlnT/dlnP), a departure from previous studies that solely modeled the temperature. Through multiple retrievals performed on different portions of the 0.9–4.2μm spectrophotometry, along with different priors on the planet’s mass and radius, we infer that AF Lep b likely possesses a metal-enriched atmosphere ([Fe/H] > 1.0 dex). AF Lep b’s potential metal enrichment may be due to planetesimal accretion, giant impacts, and/or core erosion. The first process coincides with the debris disk in the system, which could be dynamically excited by AF Lep b and lead to planetesimal bombardment. Our analysis also determinesTeff≈ 800 K,log(g)3.7dex, and the presence of silicate clouds and disequilibrium chemistry in the atmosphere. Straddling the L/T transition, AF Lep b is thus far the coldest exoplanet with suggested evidence of silicate clouds.

     
    more » « less
    Free, publicly-accessible full text available October 17, 2024
  4. ABSTRACT

    Brown dwarfs with well-measured masses, ages, and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos–Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately $3.59_{-1.15}^{+0.87}$ Gyr at a distance of 36.99 ± 0.03 pc. In advance of our high-contrast imaging observations, we combined precision High Accuracy Radial velocity Planet Searcher (HARPS) Radial Velocities (RVs) and HGCA astrometry to predict the potential companion’s location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the L′ band, which revealed a companion with a contrast of $\Delta L^{\prime }_p = 9.20\pm 0.06$ mag at a projected separation of ≈0.35 arcsec (≈13 au) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source Markov chain Monte Carlo orbit fitting code orvara. We obtain a dynamical mass of $65.9_{-1.7}^{+2.0} M_{\rm Jup}$ that places HD 176535 B firmly in the brown dwarf regime. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of $\rm log(\mathit{ L}_{bol}/L_{\odot }) = -5.26\pm 0.07$ and a model-dependent effective temperature of 980 ± 35 K for HD 176535 B. We infer HD 176535 B to be a T dwarf from its mass, age, and luminosity. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/Keck Planet Imager and Characterizer, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph.

     
    more » « less
  5. Abstract

    The orientation between a star’s spin axis and a planet’s orbital plane provides valuable information about the system’s formation and dynamical history. For non-transiting planets at wide separations, true stellar obliquities are challenging to measure, but lower limits on spin–orbit orientations can be determined from the difference between the inclination of the star’s rotational axis and the companion’s orbital plane (Δi). We present results of a uniform analysis of rotation periods, stellar inclinations, and obliquities of cool stars (SpT ≳ F5) hosting directly imaged planets and brown dwarf companions. As part of this effort, we have acquired newvsini*values for 22 host stars with the high-resolution Tull spectrograph at the Harlan J. Smith telescope. Altogether our sample contains 62 host stars with rotation periods, most of which are newly measured using light curves from the Transiting Exoplanet Survey Satellite. Among these, 53 stars have inclinations determined from projected rotational and equatorial velocities, and 21 stars predominantly hosting brown dwarfs have constraints on Δi. Eleven of these (5211+10% of the sample) are likely misaligned, while the remaining 10 host stars are consistent with spin–orbit alignment. As an ensemble, the minimum obliquity distribution between 10 and 250 au is more consistent with a mixture of isotropic and aligned systems than either extreme scenario alone—pointing to direct cloud collapse, formation within disks bearing primordial alignments and misalignments, or architectures processed by dynamical evolution. This contrasts with stars hosting directly imaged planets, which show a preference for low obliquities. These results reinforce an emerging distinction between the orbits of long-period brown dwarfs and giant planets in terms of their stellar obliquities and orbital eccentricities.

     
    more » « less
  6. Abstract

    We present the direct-imaging discovery of a giant planet orbiting the young star AF Lep, a 1.2Mmember of the 24 ± 3 MyrβPic moving group. AF Lep was observed as part of our ongoing high-contrast imaging program targeting stars with astrometric accelerations between Hipparcos and Gaia that indicate the presence of substellar companions. Keck/NIRC2 observations inLwith the vector vortex coronagraph reveal a point source, AF Lep b, at ≈340 mas, which exhibits orbital motion at the 6σlevel over the course of 13 months. A joint orbit fit yields precise constraints on the planet’s dynamical mass of3.20.6+0.7MJup, semimajor axis of8.41.3+1.1au, and eccentricity of0.240.15+0.27. AF Lep hosts a debris disk located at ∼50 au, but it is unlikely to be sculpted by AF Lep b, implying there may be additional planets in the system at wider separations. The stellar inclination (i*=549+11°) and orbital inclination (io=5012+9°) are in good agreement, which is consistent with the system having spin–orbit alignment. AF Lep b is the lowest-mass imaged planet with a dynamical mass measurement and highlights the promise of using astrometric accelerations as a tool to find and characterize long-period planets.

     
    more » « less
  7. Abstract

    We present the latest and most precise characterization of the architecture for the ancient (≈11 Gyr) Kepler-444 system, which is composed of a K0 primary star (Kepler-444 A) hosting five transiting planets and a tight M-type spectroscopic binary (Kepler-444 BC) with an A–BC projected separation of 66 au. We have measured the system’s relative astrometry using the adaptive optics imaging from Keck/NIRC2 and Kepler-444 A’s radial velocities from the Hobby-Eberly Telescope and reanalyzed relative radial velocities between BC and A from Keck/HIRES. We also include the Hipparcos-Gaia astrometric acceleration and all published astrometry and radial velocities in an updated orbit analysis of BC’s barycenter. These data greatly extend the time baseline of the monitoring and lead to significant updates to BC’s barycentric orbit compared to previous work, including a larger semimajor axis (a=52.22.7+3.3au), a smaller eccentricity (e= 0.55 ± 0.05), and a more precise inclination (i=85404+03). We have also derived the first dynamical masses of B and C components. Our results suggest that Kepler-444 A’s protoplanetary disk was likely truncated by BC to a radius of ≈8 au, which resolves the previously noticed tension between Kepler-444 A’s disk mass and planet masses. Kepler-444 BC’s barycentric orbit is likely aligned with those of A’s five planets, which might be primordial or a consequence of dynamical evolution. The Kepler-444 system demonstrates that compact multiplanet systems residing in hierarchical stellar triples can form at early epochs of the universe and survive their secular evolution throughout cosmic time.

     
    more » « less
  8. Abstract

    Model-independent masses of substellar companions are critical tools to validate models of planet and brown dwarf cooling, test their input physics, and determine the formation and evolution of these objects. In this work, we measure the dynamical mass and orbit of the young substellar companion HD 984 B. We obtained new high-contrast imaging of the HD 984 system with Keck/NIRC2 that expands the baseline of relative astrometry from 3 to 8 yr. We also present new radial velocities of the host star with the Habitable-Zone Planet Finder spectrograph at the Hobby-Eberly Telescope. Furthermore, HD 984 exhibits a significant proper motion difference between Hipparcos and Gaia EDR3. Our joint orbit fit of the relative astrometry, proper motions, and radial velocities yields a dynamical mass of 61 ± 4MJupfor HD 984 B, placing the companion firmly in the brown dwarf regime. The new fit also reveals a higher eccentricity for the companion (e= 0.76 ± 0.05) compared to previous orbit fits. Given the broad age constraint for HD 984, this mass is consistent with predictions from evolutionary models. HD 984 B’s dynamical mass places it among a small but growing list of giant planet and brown dwarf companions with direct mass measurements.

     
    more » « less
  9. Abstract

    Benchmark brown dwarf companions with well-determined ages and model-independent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing high-contrast imaging campaign of stars exhibiting proper-motion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the Hipparcos-Gaia proper motions, yielding a dynamical mass of244+6MJup, which is 1–2σlower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wide-separation (1837″ or 7.9 × 104au) early-L dwarf with an inferred mass near the hydrogen-burning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008) atmospheric models and a suite of retrievals. The best-fit grid-based models havefsed= 2, indicating the presence of clouds,Teff= 1400 K, andlogg=4.5dex. These results are consistent with the object’s spectral type of T0 ± 1. As the first benchmark brown dwarf companion in the Hyades, HIP 21152 B joins the small but growing number of substellar companions with well-determined ages and dynamical masses.

     
    more » « less
  10. Abstract

    We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16μm. At a separation of ∼0.″82 (8731+108au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σcontrast limits of ∼1 × 10−5and ∼2 × 10−4at 1″ for NIRCam at 4.4μm and MIRI at 11.3μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJupbeyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by aBT-SETTLatmospheric model from 1 to 16μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained betweenlogLbol/L= −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024